Press "Enter" to skip to content

分类: LLAMA

大模型入门(四)—— 基于peft 微调 LLaMa模型

  llama-7b模型大小大约27G,本文在单张/两张 16G V100上基于hugging face的peft库实现了llama-7b的微调。 1、模型和数据准备 使用的大模型:https://huggingface.co/decapoda-research/llama-7b-hf,已经是float16的模型。 微调数据集:https://github.com/LC1332/Chinese-a…

Leave a Comment

大模型入门(三)—— 大模型的训练方法

参考hugging face的文档介绍:https://huggingface.co/docs/transformers/perf_train_gpu_many#naive-model-parallelism-vertical-and-pipeline-parallelism,以下介绍聚焦在pytorch的实现上。   随着现在的模型越来越大,训练数据越来越多时,单卡训练要么太慢,要么无法存下整个…

Leave a Comment

大模型入门(二)—— PEFT

 PEFT(Parameter-Efficient Fine-Tuning)是hugging face开源的一个参数高效微调大模型的工具,里面集成了4中微调大模型的方法,可以通过微调少量参数就达到接近微调全量参数的效果,使得在GPU资源不足的情况下也可以微调大模型。 1)LORA:LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS   LORA是PEFT中最常…

Leave a Comment

大模型入门(一)—— LLaMa/Alpaca/Vicuna

 LLaMa模型是Meta开源的大模型,模型参数从7B到65B不等,LLaMa-7B在大多数基准测试上超过了GPT3-173B,而LLaMa-65B和Chinchilla-70B、PaLM-540B相比也极具竞争力。相比于ChatGPT或者GPT4来说,LLaMa可能效果上还有差距,但相比Closed AI,至少LLaMa论文和模型都开源出来了,目前hugging face已集成了LLaMa的代码…

Leave a Comment

LLaMA语言模型论文讲解

一、简介 LLaMA是2023年Meta发布的基础LLM模型,该模型有四个版本,分别是7B、13B、33B、65B参数的模型。最近因为模型被泄漏,模型权重可以在网上搜索下载。相对于GPT序列的模型,LLaMA更加亲民一些,主要体现在参数量较小的模型也可以让平民玩的动。而且现在网上有不少基于LLaMA模型做的应用,比如ChatDoctor、Alpaca等等。 二、主要贡献 1、小模型在大Token …

Leave a Comment